An Optimization-Based Approach to Understanding Sensory Systems
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Nothing in biology makes sense except in light of evolution.

— Theodosius Dobzhansky

Nothing in neurobiology makes sense except in light of behavior.

— Gordon Shepherd

Abstract Recent results have shown that deep neural networks (DNN) may have significant potential to
serve as quantitatively precise models of sensory cortex neural populations. However, the implications these
results have for our conceptual understanding of neural mechanisms are subtle. This is because many modern
DNN brain models are best understood as the products of task-constrained optimization processes, unlike the
intuitively simpler hand-crafted models from earlier approaches. In this chapter, we illustrate these issues by
first discussing the nature of information processing in the primate ventral visual pathway, and review results
comparing the response properties of units in goal-optimized DNN models to neural responses found throughout
the ventral pathway. We then show how DNN visual system models are just one instance of a more general
optimization framework whose logic may be applicable to understanding the underlying constraints that shape
neural mechanisms throughout the brain.

An important part of a scientist’s job is to answer “why” questions. For cognitive neuroscientists, a core
objective is to uncover the underlying reasons why the structures of the human brain are as they are. Since
brains are biological systems, answering such questions is ultimately a matter of identifying the evolutionary and
developmental constraints that shape brain structure and function. Such constraints are in part architectural:
what large-scale brain structures are put in place genetically to help a brain help its host organism better
meet evolutionary challenges? In light of the centrality of behavior in understanding the brain, an ethological
investigation is also indicated: what behavioral goals most strongly constrain a given neural system? And since
many complex behaviors in higher organisms are not entirely genetically determined and must instead be partly
derived through experience of the world, a core question of learning is also involved: how do learning rules that
absorb experiential data constrain what brains look like?

The interactions between architectural structure, behavioral goals, and learning rules suggest a quantita-
tive optimization framework as one route toward answering these “why” questions. Put simply, this means:
postulating one or several goal behavior(s) as driving the evolution and/or development of a neural system of
interest; finding architecturally plausible computational models that (attempt to) optimize for the behavior;
and then quantitatively comparing the internal structures arrived at in the optimized models to measurements
from large-scale neuroscience experiments. To the extent that there is a match between optimized models and
the real data that is very substantially better than that found for various controls (e.g. models designed by
hand or optimized for other tasks), this is evidence that something important has been understood about the
underlying constraints that shape the brain system under investigation. Though it might sound challenging to
put this approach into practice, recent successes suggest we might add to our list of maxims the observation
that nothing in computational cognitive neuroscience makes sense except in light of optimization.

Case Study: The Primate Ventral Visual Stream

The most thoroughly developed example of these optimization-based ideas is the visual system — and in
particular, the ventral visual stream in humans and non-human primates. While a complete review of the work
that lead to the present understanding of the primate ventral stream is beyond the scope of this chapter (see
DiCarlo et al.X for a summary), discussing key computational aspects of the ventral stream in some detail will
lay the groundwork for the optimization approach more generally.
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The computational crux of the vision problem. The human brain effortlessly reformats the “blooming,
buzzing confusion” of unstructured visual datastreams into powerful abstractions that serve high-level behavioral
goals such as scene understanding, navigation, and action planning?. But parsing retinal input into rich object-
centric scene descriptions is a major computational challenge. The crux of the problem is that the axes of the
low-level input space (i.e. light intensities at each retinal “pixel”) don’t correspond to the natural axes along
which high-level constructs vary. For example, translation, rotation in depth, deformation, or re-lighting of a
single object (e.g. one person’s face) can lead to large and complex non-linear transformations of the original
image. Conversely, images of two ecologically quite distinct objects, e.g. different individuals' faces, may be very
close in pixel space. Behaviorally-relevant dimensions are thus highly “tangled” in the original input space®, and
to recognize objects and understand scenes the brain must accomplish a complex and often ill-posed non-linear
untangling process rapidly and accurately.

Hierarchy and Retinotopy in the Ventral Pathway Sparked by the seminal ideas of Hubel and Wiesel,
six decades of work in systems neuroscience have shown that the homologous visual system in humans and non-
human primates generates robust object recognition behavior via a series of anatomically-distinguishable cortical
areas known as the ventral visual stream (Fig. —b)1'4'7. Two basic principles of architectural organization
emerging from this work are that the ventral stream is:

1. hierarchical, with visual information passing along a cascade of processing stages embodied by the distinct
cortical areas, and
2. retinotopic, composed of structurally similar operations with spatially local receptive fields tiling the overall
visual field, with decreasing spatial resolution in each subsequent stage of the hierarchy.
Visual areas early in the hierarchy, such as V1 cortex, capture low-level features including edges and center-
surround patterns®?. Neural population responses in the highest ventral visual area, anterior inferior temporal
(AIT) cortex, can be used to decode object category, robust to significant variations present in natural im-
ages1912 Mid-level visual areas such as V2, V3, V4 and posterior IT (PIT) are less well-characterized by
such “word models” than higher or lower visual areas closer to the sensorimotor periphery. Nonetheless, these
intermediate areas appear to contain computations at an intermediate level of complexity between simple edges
and complex objects, along a pipeline of increasing receptive field sizet:13720

Linear-Nonlinear Cascades. A core hypothesis is that ventral stream employs sensory cascades because:
(i) the overall stimulus-to-neuron transforms required to support complex behaviors are extremely complicated
— after all, since the original input tangling is highly non-linear, the inverse untangling process is also highly
non-linear; but (ii) the capacities of any single stage of neural processing are limited to comparatively simple
operations such as weighted sums of inputs, thresholding nonlinearities, and local normalization®. To build
up a sufficiently complex end-to-end transform with a reasonable number of neurons, a cascade of stages is
needed. Complex non-linear transformations arise from multiple such stages applied in series?!. Such cascades
are present not just in the visual system but are common in a wide variety of sensory areas?72%,

A very simplified version of the feedforward component of the multi-stage sensory cascade may thus be
represented symbolically by:

. T T T;
stimulus —> n; —> nsy ... ﬁ)ntop (1)

where the n; represent neural responses in brain area i, and 7T; is the transform computed by the neurons in area
i based on input from area i — 1. In the macaque ventral stream this will (at least) include several subcortical
stages prior to the ventral stream (e.g. the retinal ganglion and LGN), followed by cortical areas V1, V2, V4,
PIT, and AIT. The homologous structure in humans is similar but likely to be substantially more complex©.

Robust empirical observations® suggest that the transforms 7T; can be reasonably well-modeled as Linear-
Nonlinear (LN) blocks of the form:

Biologically, the linear transforms L; are inspired by the observation that neurons are admirably suited for taking
dot-products, i.e. summing up their inputs on each incoming dendrite, weighted by synaptic strengths. The
transforms L; formalize the synaptic strengths as numerical matrices. Mathematically, the L; map the input
feature space output by one area to an intermediate feature space in the next. In the case of L; (the transform
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Figure 1: Hierarchical Convolutional Neural Networks As Models of Sensory Cortex. (a.) The basic framework
in which sensory cortex is studied is one of encoding, the process by which stimuli are transformed into patterns of neural
activity, and decoding, the process by which neural activity generates behavior. (b.) The ventral visual pathway of humans
and non-human primates is one of the most comprehensively studied sensory systems in neuroscience. It consists of a
series of connected cortical brain areas that are thought to operate in a sensory cascade, from early visual areas such as
V1, to later visual areas such as inferior temporal (IT) cortex. Neural responses in the ventral pathway are believed to
encode an abstract representation of objects in visual images. (c.) Hierarchical Convolutional Neural Networks (HCNNs)
are multilayer neural networks that have been proposed as models of the ventral pathway. Each layers of an HCNN is made
up of a Linear-Nonlinear (LN) combination of simple operations such as filtering, thresholding, pooling, and normalization.
The filterbank in each layer consists of a set of weights analogous to synaptic strengths. Each filter in the filter bank
corresponds to a distinct template, analogous to gabor wavelets with different frequencies and orientations (the image
shows a model with four filters in layer 1, 8 in layer two, and so on). The operations within a layer are applied locally to
spatial patches within the input, corresponding to simple, limited-size receptive fields (the red boxes in the figure). The
composition of multiple layers leads to a complex nonlinear transform of the original input stimulus. At each layer, retinopy
decreases and effective receptive field size increases.

between the input image and the first visual area, taken to be either subcortical or in V1), the input space is
the three-channel RGB-like representation of pixels, while the output space is substantially higher-dimensional,
corresponding to number of different neural projections computed at each retinotopic location. An extensive
line of research characterizing V1 responses®<:2% yielded the realization that the linear transforms early on the
in cascade can be reasonable well-characterized as spatial convolution with a filterbank of Gabor wavelets in a
range of frequencies and orientations??.

The nonlinear component INV; has been shown to involve combinations of very basic transforms, including
rectification, pooling, and normalization operations®1?. While the T}'s are simple, it is critical that they are at
least somewhat nonlinear: the composition of linear operations is linear, so additional complexity can't be built
up by a sequence of linear operations, and there would be no evolutionary point to allocating multiple brain
areas for them in the first place.

It is tempting to ascribe specific functional roles for each of the constituent operations within an LN block,
described in terms of features of the original input stimulus. While this may be possible early in the sensory
cascade, the compounding of multiple nonlinearities makes it unlikely that this type of description is adequate for
intermediate or higher sensory areas. Instead, it is probably more effective to think of the LN block as combining
a dimension-expanding component (the linear filtering step), a dimension-reducing aggregation component (the
pooling operation), and a range-centering component to ensure that the cascade can be effectively extended
hierarchically (the normalization operations). These features allow LN cascades to cover a wide range of complex
nonlinear functions in an efficient manner®%3L consistent with the idea that good LN cascade architectures can
be discovered by evolutionary and developmental processes.

A Common Visual Feature Basis. The features computed by the sensory cascade are often thought of
as constituting a visual representation. One way to interpret this idea is that the output from area nyp —



which is considerably upstream of highly-task-modulated decision making or motor areas — is able to support
observed organism output behaviors via simple decoders. Symbolically, this is the observation that the pipeline
in diagram ({1)) can be extended to:

: D .
stimulus . .. — Ny, — behavior (2)

where D is a population decoder. The requirement that D be “simple” just means that it can also be cast
in the form of a single LN block rather than itself requiring many stages of nonlinearity. In the case of the
macaque visual system, the role of ny, seems to be played by anterior IT cortex, where it has been robustly
shown that simple decoders such as linear classifiers or linear regressors operating on neural responses in IT
cortex can support patterns of visual behavior at a high degree of behavioral resolution®:0:1012:32 The [inear
classifiers embody a computational description of hypothetical decoding circuits downstream of the ventral visual
representation33:34

The representation concept is enhanced by the observation that IT cortex can provide useful support for
many different visual behaviors. In addition to object category, attributes such as fine-grained within-category
identification, object position, size, and pose, and complex lighting and material properties, can be decoded
from IT neural activity®>3¢. Symbolically, this might be represented by the diagram:

D/Categow
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in which D1, Do, ... are different readout decoders for the various possible visually-driven behaviors.

A key observation is that for naturalistic scenes with realistically high levels of image variability, these same
visual properties cannot be robustly read out from the visually-evoked neural responses in earlier areas such as
the retina, V1 or V2 using simple decoders, and only partially in intermediate areas such as V41935 Of course,
the information must in some way be present in these areas since the properties can be determined by looking
at the image. However, as alluded to earlier, these properties are “tangled up” in the representations in early
areas, and so cannot be easily decoded. The nonlinear operations of the ventral stream cascade culminating in
the IT representation have reformatted the information in the input image stimuli into a common basis from
which it is possible to generate many different behaviorally-relevant readouts.

Not Just an Information Channel. These considerations suggest that the ventral stream is not best
thought of as a “channel” in the sense of Shannon information theory. As a result of (converse of ) the Shannon's
famous channel coding theorem, with every step of the cascade, the system can only lose information in an
information-theoretic sense . The more stages in the case, the less good it will be as a pure information channel.
The existence of a many-stage LN cascade in the ventral pathway suggests that the evolutionary constraint on the
system is not the veridical preservation of information about the stimulus. Rather, the constraining evolutionary
goal of the sensory cascade is more likely to be making behaviorally-relevant information — such as the identity
of a face present in the image — much more explicitly available for easy access by downstream brain areas,
while discarding other information about the stimuli — such as pixel-level details — that are less behaviorally
relevant.

Neural Network Models of the Ventral Stream

In this section, we'll discuss how the neurophysiological observations described above can be formalized
mathematically. But before diving into models of the ventral stream, it is worth briefly considering why we
might want to make quantitative neural network models of the ventral stream in the first place. After all,
neuroscientists did not need such models to discover the important insights described in the previous section.

Two convergent problems, however, strongly motivate the building of large-scale formal models. First,
the simpler word-model approach that had been useful for characterizing the shape of visual feature tuning
curves in earlier cortical areas such as the retina or V1 were found to be difficult to generalize to intermediate
and higher-level visual areas®®. Though some progress has been made using intuition to find visual features



to which intermediate and higher-area neurons would respond”2%59 3 more systematic approach is needed to
organize and generalize these disparate observations. Second, it turned out that the most naive implementations
of multi-layer hierarchical retinotopic models performed very poorly on tests of performance generalization in
real-world settings4?. Although hierarchy and retinotopy appeared to be important high-level principles, they
were insufficiently detailed to actually produce operational algorithms with anything like the visual abilities of a
macaque or a human. Echoing Feynman's famous dictum that “"What | cannot create, | do not understand,”
the inability to create from scratch a truly working visual recognition system meant that some key feature of
understanding was missing.

Hierarchical Convolutional Neural Networks Hierarchical Convolutional Neural Networks (HCNNSs) are
a broad generalization of Hubel and Wiesel's ideas that has been developed over the past 40 years by researchers
in biologically-inspired computer vision*13 HCNNs consist of cascades of layers containing simple neural circuit
motifs repeated retinotopically across the sensory input (Fig. ) Each layer is simple, but a deep network
composed of such layers computes a complex transformation of the input data — roughly analogous to the
organization the ventral stream. The specific operations comprising a single HCNN layer were inspired directly
by the LN neural motif®, including: convolutional filtering, a linear operation that takes the dot-product of
local patches in the input stimulus with a set of templates, typically followed by rectified activation, mean or
maximum pooling®®, and some form of normalization*>. All the basic operations exist within a single HCNN
layer, which is designed to be analogous to single cortical area within the visual pathway.

A key feature of HCNNs is that all operations are applied locally, over a fixed-size input zone that is smaller
than the full spatial extent of the input. HCNNs employ convolutional weight sharing, meaning that the same
filter templates are applied at all spatial locations. Since identical operations are applied everywhere, spatial
variation in the output arises entirely from spatial variation in the input stimulus. It is unlikely the brain literally
implements weight sharing, since the physiology of the ventral stream appears to rule out the existence of a
single “master” location in which shared templates could be stored. However, the natural visual statistics of
the world are themselves largely shift invariant in space (or time), so experience-based learning processes in the
brain should tend to cause weights at different spatial locations to converge. Shared weights are therefore likely
to be a reasonable approximation, at least within the central visual field.

Although the local fields seen by units in a single HCNN layer have a fixed small size, the effective receptive
field size relative to the original input increases with succeeding layers in the hierarchy. Like the brain's ventral
pathway, multi-layer HCNNs typically become less retinotopic with each succeeding layer, consistent with em-
pirical observations®. However, the number of filter templates used in each layer typically increases. Thus, the
dimensionality changes through the layers from being dominated by spatial extent, to being dominated by more
abstract feature dimensions. After many layers, the spatial component of the output may be so reduced that
convolution is no longer meaningful, whereupon networks may be extended using one or more fully connected
layers that further process information without explicit retinotopic structure. The last layer is usually used for
readout, e.g. for each of several visual categories, the likelihood of the input image containing an object of the
given category might be represented by one output unit.

Learning Modern Deep HCNNs The earliest HCNNs were not particularly effective either at solving
vision tasks or quantitatively describing neurons. Arbitrary hierarchical retinotopic nonlinear functions don't
appear to compute useful representations4®, and hand-designed filterbanks in multi-layer networks were also not
performant®949. |t was realized early on, however, that the parameters of the HCNNs could be /earned — that
is, optimized so that the network output maximized performance. Parameters subject to optimization include
both discrete choices about the particular architecture to be used (how many layer? how many features per
layer? what local receptive field should be used at a given layer?), as well as the continuous parameters of the
linear transforms L; at each layer.

Initial attempts to learn HCNNs lead to intriguing and suggestive results*<, but were not entirely satisfactory
either in terms of neural similarity or task performance. However, recent work in computer vision and artificial
intelligence has sought to use advances in hardware-accelerated computing to optimize parameters of deep neural
networks to maximize their performance on more challenging large-scale visual tasks*’. Leveraging computer
vision and machine learning techniques, together with large amounts of real-world labelled images used as
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Figure 2: (a.) Visual object categorization task performance (z-axis) is highly correlated with ability to predict IT cortex
neural responses (y-axis) (adapted from Yamins et al.®*). Blue dots are various 3-layer (shallow) HCNN models, either
with random weights or optimized either for categorization performance or to predict IT responses. Black squares represent
a variety of previous models. Red dots represent increasing performance and predictivity over time as a deep HCNN is
trained. r value is for red and black points. Green square is a category observer with perfect semantic category knowledge,
to control for how much neural variance is explained just by categorical features alone. (b.) Analogous result for neural
networks optimized for auditory tasks (adapted from Kell et al.®?).

supervised training data*®4? HCNNs have arguably achieved human-level performance on several challenging
object categorization tasks®%>1/

In fact, the power of HCNNSs trained on large datasets goes beyond merely doing well on training sets. Unlike
small datasets that are prone to severe overfitting, large highly variable datasets such as ImageNet have yielded
networks that can serve as useful bases for solving a variety of other visual tasks®23. State-of-the-art solutions
to ImageNet categorization often exhibit especially good transfer capabilities®?. In other words, training HCNNs
in a supervised manner has at least some power to produce robust visual representations.

Quantitative Matches Between HCNNs and Ventral Pathway Areas A core result linking the deep
HCNNs used in modern computer vision to ideas from visual systems neuroscience is that an HCNN's ability
to predict neural responses in visual cortex is strongly correlated with its performance on challenging object
categorization tasks®#°9, Such correlations have been investigated by high-throughput studies comparing tens
of thousands of distinct HCNN model instantiations to neural data from both large-scale array electrophysiology
experiments in macaques>* as well human fMRI®Z. While the correlation is present for HCNNs with randomly
chosen architectures, it is especially high when architectures are optimized for task performance (Fig. )

Inferior Temporal Cortex: Tighter relationships between HCNNs and neural data are observed on a per-
area basis. Model responses from hidden layers near the top of HCNNs optimized for ImageNet categorization
performance are highly predictive of neural responses in IT cortex, both in electrophysiological (Fig. )54'58,
and fMRI data®™®?. These deep, goal-optimized neural networks (red squares in Fig. ) have thus yielded
the first quantitatively accurate, predictive model of population responses in a higher cortical brain area. These
quantitative models are also substantially better at predicting neural response variance in IT than semantic
models based on word-level descriptions of object category or other attributes (green square in Fig. )54.
Recent high-performing ImageNet-trained architectures also appear to provide the best matches to the visual
behavioral patterns of primates®.

Intermediate Visual Areas: Intermediate layers of the same HCNNs that match IT neurons also yield state-
of-the-art predictions of neural responses in V4 cortex (Fig. [3b)5#5%, the dominant cortical input to IT. Similarly,



recent models with especially good performance have distinct layers clearly segregating late-intermediate visual
area PIT neurons from downstream central IT (CIT) and AIT neurons®!. These results are important because
they show that high-level ecologically-relevant constraints on network function — ie. the categorization task
imposed at the network’s output layer — are strong enough to inform upstream visual features in a non-trivial
way. In other words, HCNN models suggest that the computations performed by the circuits in V4 are structured
so that downstream computations in AIT can support high-variation robust categorization tasks. Thus, even
though there may be no simple word-model describing what the features in an intermediate cortical area such
as V4 are, HCNNs can provide a principled description of why the area’s neural responses might be as they are.

Early Visual Cortex: Results in early visual cortex are equally striking. The filters emergent in HCNNs'
early layers from the learning process naturally resemble Gabor wavelets without having to build this structure
in“8. Extending the correspondence between HCNN layers and ventral stream layers down further, it has been
shown that lower HCNN layers match neural responses in early visual cortex areas such as V1 (Fig. ) S7I5902|
In fact, recent high-resolution results show that early-intermediate layers of performance-optimized HCNNs are
substantially better models of macaque V1 neural responses to natural images than previous state-of-the-art
models that were hand-designed to replicate qualitative neuroscience observations®.

Taken together, these results indicate that combining two general biological constraints — the behavioral
constraint of object recognition performance, and the architectural constraint imposed by the HCNN model
class — leads to improved models of multiple areas through the visual pathway hierarchy.

A Contrast to Curve Fitting A key feature of these results is that the parameters of the HCNN models
are optimized to solve a visual performance goal that is ethologically plausible for the organism, rather than
being directly fit to neural data. Yet, the resulting neural network effectively models the biology as well or
better than direct curve fits®#03 This is the idea of goal-driven modeling®®. Goal-driven modeling is attractive
as a method for building quantitative cortical models for several reasons. Practically speaking, it does not
require the collection of the unrealistically massive amounts of neurophysiological data that would be needed
to fit deep networks to such data. Second, because model validity is assessed on a completely different metric
(and different dataset) than the one used to choose model parameters, the results are comparatively free
from overfitting and/or multiple-comparison problems. Finally, the approach posits an evolutionally plausible
functional reason for choices of model parameters throughout the hierarchy.

A Tripartite Optimization Framework

While the results described in the previous section are in some ways specific to the primate ventral pathway,
they are based on a more general underlying logic that can apply to neural network modeling problems throughout
computational neuroscience. Specifically, three fundamental components underlie all functionally-optimized
neural network models:

e An architecture class A containing potential neural network structures from which the real system is
drawn. A captures the structural constraints on the network drawn from knowledge about a brain system'’s
anatomical and functional connectivity.

o A computational goal that the system seeks to accomplish, mathematically expressed as a loss target
function

L:A— R

to be minimized by parameter choices within the set .A. For any potential network a € A, the value £(a)

represents the error that network incurs in attempting to solve the computational goal. £ captures the

functional constraints on the network drawn from hypotheses about the organism’s behavioral repertoire.
e A learning rule by which optimization for £ occurs within the architecture class .A. This is a function

RL cA— A
such that, at least statistically, for any non-optimal network A € A,

L(Re(A)) < L(A). (3)
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Figure 3: (a.) Based on Yamins et al.**, comparison of ability of various computational models to predict neural responses
of populations of macaque IT neurons (right). The HCNN model (red bars) is a significant improvement in neural response
prediction compared to previous models (black bars) and task ideal observers (green bars). The top HCNN layer 7 best
predicts IT responses. (b.) Similar to a., but for macaque V4 neurons. Note that intermediate layer 5 best predicts V4
responses.(c.) Representational similarity between visual representations in HCNN model layers and human V1-V3, based
on fMRI data (adapted from Khaligh-Razavi & Kriegeskorte®”). Horizontal gray bar represents the inherent noise ceiling
of the data. Note that earlier HCNN model layers most resemble early visual areas.

Biologically, the learning rule captures the way that the error signal from mismatches between the system’s
current output and the correct outputs (as as defined by the computational goal) is used to identify better
parameter choices, over evolutionary and developmental timeframes.
This framework predicts that, statistically, the actual biologically-observed system is approximated by the optimal
solution within A to the goal posed by L, i.e.

A* = argmin L(A), (4)
AcA

to the extent that the optima is actually reachable from chosen initial conditions via the learning rule. Of
course, biological systems produced by evolution and development are not guaranteed to be optimal for their
evolutionary niche, so this prediction is really more an informed heuristic for hypothesis generation rather than
a candidate natural law. In fact, any practically implementable learning rule will not perfectly meet the criterion
in eq. , being subject to the same problem that evolution/development faces: failures to achieve optimum
due to incomplete optimization or capture by local minima. Insofar as the model of the learning rule and initial
condition distribution is itself biologically accurate, the same patterns of performance failures should be observed
in both the model and the real behavioral data®.

Returning to the example of the primate ventral stream, the model architecture class .4 has been taken
to include feedforward HCNNs, broadly capturing aspects of the known neuroanatomical structure of ventral
visual pathway. The parameters describing this class of models include (1) discrete choices about (e.g.) the
number of layers in the cascade, the specific nonlinear operations to employ at each layer, and the sizes of local
receptive fields (see Yamins & DiCarlo*® for more details on these parameters), and (2) the continuous-valued
filter templates embodied by the linear transforms L; at each layer. The loss target £ has typically been chosen
as categorization error on the 1000-way object recognition task in the ImageNet dataset*’, capturing the fact
that primates have especially strong invariant object recognition capacities.

The learning rule used for optimizing HCNNs to solve categorization problems is composed of two pieces,
corresponding to the two types of model parameters: (1) an “outer loop” of metaparameter optimization used
for selecting the discrete parameters, typically either just random choice? or a simple evolutionary algorithm®#,
and (2) an “inner loop” of smooth optimization of the synaptic strength parameters L;, typically involving
gradient descent:

dL;
dt

—A(t) - Vi, [L]. (3)



This expression formalizes the idea that learning modifies the synaptic strengths L; of the visual system over
time — the derivative dL; /dt — by greedily seeking to minimize the value of the loss target, scaled in magnitude
by the learning rate A(t).

There are many variants of gradient descent that have been explored in the machine learning literature, some
of which scale better or achieve faster or better optimization®4% Though Hebbian learning rules have been
proposed many times in neuroscience®’¢8 and have attractive theoretical properties®?, explicit error-based rules
such as gradient descent have proven substantially more computationally effective. There is much debate about
the biological realism of gradient descent™, and an ongoing area of research seeks to discover more biologically
plausible versions of explicit error-driven learning rules™+2,

While a vast oversimplification, the relationship between optimizing discrete architecture parameters and
synaptic strength parameters is somewhat analogous to the relationship between evolutionary and developmental
learning. Changes to synaptic strengths are continuous and can occur without modifying the overall system
architecture, and thus could support experience-driven optimization during the lifetime of the organism. Changes
in the discrete parameters, in contrast, restructure the computational primitives, the number of sensory areas
(model layers) and the number of neurons in each area, and thus are more likely to be selected over evolutionary
time.

Mapping Models to Data A goal-optimized model generates computationally precise hypotheses for how
data collected from the real system will look. Testing these hypotheses involves assessing metrics of similarity
between the model and the brain system, both for the output behaviors of the system, as well as for internal
responses of the system’s neural components. Several commonly-used metrics for assessing the mapping of
models to empirical data include (from coarsest to finest resolution):

e Behavioral consistency. Even before any neural data is collected, high-throughput systematic measurements
of psychophysical data can be used obtain a “fingerprint” of human behavioral responses across a wide variety
task conditions®. This fingerprint can then be compared to output behavior on these tasks as generated
by neural network models. For example, Rajalingham et al.®Y show that achieving consistency with high-
resolution human error patterns in visual categorization tasks is a very strong test of correctness for models
of the primate visual system.

e Population-level neural comparison. The Representation Dissimilarity Matrix (RDM) is a convenient tool for
comparing two neural representations at a population level”3. Each entry in the RDM corresponds to one
stimulus pair, with high/low values indicating that the population as a whole treats the pair stimuli as very
different/similar. Taken over the whole stimulus set, the RDM characterizes the layout of the images in the
high-dimensional neural population space. A measure of how similar the representations are between real
neural populations and those produced by a neural network can be obtained by assessing the correlations
between the RDMs from each layer of a neural network models and the RDMs from real neural populations.
This technique, which is called Representational Similarity Analysis (RSA), has been effectively used for
comparing visual representations in human fMRI data to HCNN models®’.

e Single-neuron regression. Linear regression is a convenient method for mapping units from neural network
models to individual neural recording sites®®. For each neural site, this technique seeks to identify a linear
weighting of neural network model output units (typically from one network layer) that is most predictive
of that neural site's actual output on a fixed set of sample images. The “synthetic neuron” then produces
response predictions on novel stimuli not used in the regression training, which are then compared to the
actual neural site's output. Accuracy in regression prediction has shown to be a useful tool for achieving
finer-grained model-brain mappings when higher resolution (e.g. electrophysiological) data is available®#6,

See Yamins & DiCarlo® for a more detailed description and evaluation of these and other mapping procedures.

Properly Assessing Model Complexity When comparing any two models of data, it is important to
ensure that model complexity is taken into account: a complex model with many parameters may not be an
improvement over a simple model with fewer parameters, even if the former has a somewhat better fit to the data.
However, even though goal-optimized deep neural networks have many parameters before task optimization,
those parameters are determined by the optimization process in attempting to solve the computational goal
itself. Thus, when the optimized networks are subsequently mapped to brain data, these parameters are no longer



available for free modification to fit the neurons. Hence, although it may at first be somewhat counterintuitive,
these pre-determined parameters cannot be counted when assessing model complexity, e.g. when computing
scores such as the Akaike or Bayesian Information Criteria™. Instead, once the optimized network has been
produced, the only free parameters used when comparing to neural data are just those required by the mapping
procedure itself. For example, when using Representational Similarity Analysis, no free parameters are needed
at all, since building the RDM matrix requires is a parameter-free procedure. Thus, if a larger goal-optimized
neural network achieves between match between its RDMs and those in neural populations, it has done so fairly
— that is, not by using those parameters to better (over)fit the neural data, but instead because the bigger
network has (presumably) achieved better performance on the computational goal, and the computational goal
is itself highly relevant to the real biological constraints on the neural mechanism. Similarly, when performing
single-neuron regression, the number of free parameters is equal to the number of model neurons used as linear
regressor dimensions. In this case, it is necessary (but easy) to ensure fair comparisons between models with
different numbers of features by simply subsampling a fixed number of model units as regressors (as done in e.g.
Yamins et al.®*) or using some unsupervised dimension reduction procedure (such as PCA) prior to regression.

Relationship to Previous Work in Visual Modeling Other approaches to modeling the visual system
can be placed in context of the optimization framework. Efficient coding hypotheses seek to generate efficient,
low-dimensional representations of natural input statistics. This corresponds to a choice of architecture class
A containing “hourglass-shaped” networks”® composed of a compressive intermediate encoding followed by a
decoding that produces image-like output. The loss target is then (roughly) of the form:

L(z) = ||z — D(E(x))|| + Regularization(E(z))

where E(z) is the network encoding of image x, and D is the corresponding decoding. The first term of L is
the reconstruction error, measuring the ability of the decoded representation to reproduce the original input,
while the second term prevents overfitting by imposing a “simpleness prior” on the encoder. Efficient coding
is an attractive idea because it combines functional requirements and biophysical constrains (e.g. metabolic
efficiency). Early versions of this idea such as sparse autoencoders”® have shown promise in training shallow
(one-layer) convolutional networks that naturally discover the Gabor-like filter patterns seen in V1 cortex. More
recent methods such as variational autoencoders, generative adversarial networks (GANs) and BiGANs™/79,
essentially correspond to improvements in the choice of regularization functions, and have shown promise in
training deeper networks. While such ideas have been effective in limited visual domains, improving their
applicability to unrestricted visual image space is an open question, and an important area for innovation®.

Another line of work has attempted to fit neural networks directly to data from V18l V282 and V483
cortex. These results are consistent with the optimization framework insofar as they involve finding parameters
that optimize a loss function — in this case, the mismatch between network output and the measured neural
data. Such investigations can be very informative, as they contribute to the discovery of which classes of neural
architectures best capture the data. However, unlike the goal-driven modeling approach, or the efficient coding
ideas, these direct curve-fits do not generate a normative explanation underlying why the neural responses are
as they are.

An interesting approach combines neural fits and normative explanations. In McIntosh et al.®¥, comparatively
shallow HCNNs were fit to responses in retinal ganglion cells (RGCs). A key finding in this work was that
characteristic properties of bipolar cells, which are upstream of the RGCs, naturally emerge in the networks'
first layers, just by forcing the network’s last layer to correctly emulate RGC response patterns. While this work
does not explain why the RGCs are as they are, it does suggest a kind of conditional normative explanation
for why the bipolar cell patterns are as they are, given the RGC as output. Understanding whether this holds
for other parts of the retinal circuit (e.g the intermediate cells in the amacrine layer), and whether the RGC
patterns themselves arise from a higher-level downstream computational goal, are exciting open questions.

Beyond the Visual System The goal-driven optimization approach has also had success building quan-
titatively accurate models of the human auditory system®=5  Using HCNNs as the architecture class, but
substituting a computational goal defined by speech and music genre recognition, this work finds a strong
correlation between auditory task performance and auditory cortex neural response predictivity (Fig. ) A
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representational hierarchy is also found in auditory cortex, suggesting interesting similarities to the visual sys-
tem, in that the robustness to variability (e.g. position, size, and pose tolerance) that makes convolutional
networks useful for visual object recognition may have rough equivalents in the auditory domain that make
convolution useful for parsing auditory “objects”. However, the work of Kell et al.®> goes beyond models of
a single processing stream, exhibiting multi-stream networks that solve several auditory tasks simultaneously
with an initial common architecture that subsequently splits into multiple task-specific pathways. The different
pathways of the network differentially explain neural variance in different parts of auditory cortex, illustrating
how task-optimized neural networks can help further understanding of large-scale functional organization in the
brain. Recent work has begun to tackle somatosensory systems along similar lines°.

A functionally-driven optimization approach has also been effective at driving progress in modeling the motor
system®%88 This work shows how imposing the computational goal of creating behaviorally-useful motor output
constrains internal neural network components to match otherwise non-obvious features of neurons in motor
cortex, and provides a modern computational basis for earlier work on movement efficiency®?. Unlike work on
sensory systems, the goals in motor networks are not representational, but instead focus on the generation of
dynamic patterns of motor prepration and movement?Y. For this reason, the models involved in these efforts
are typically recurrent neural networks (RNNs) rather than feedforward HCNNs. These results show that the
goal-driven optimization idea has power across a wide range of network architectures and behavioral goal types.

Analyzing Constraints Rather Than Optima A classic approach to analyzing a population of (in most
cases, sensory) neurons is to classify the shape of their tuning curves in response to systematically changing input
stimuli along certain characteristic axes that are key drivers of the populations’ variability. This approach has
been successful in a variety of brain areas, most notably in early visual cortex®’, where tuning curves illustrating
the orientation and frequency selectivity of V1 neurons laid the groundwork for Gabor-wavelet based models.

Relative to the optimization framework described above, the analysis of tuning curves is essentially an attempt
to characterize optimal networks A* in non-optimization-based terms. When a small number of mathematically-
simple stimulus-domain axes can be found in which the tuning curves of A* have a mathematically-simple shape,
A* can largely be constructed by a simple closed-form procedure without any reference to learning through it-
erative optimization. This is to some extent feasible for V1 neurons, and perhaps in early cortical areas in other
domains such as primary auditory cortex®L. It is possible that this type of simplification is most helpful for under-
standing neural responses that arise largely from highly constrained stereotyped genetic developmental programs
rather than those that depend heavily on experience-driven learning®?, or where biophysical constraints — such
as metabolic cost or noise reduction — might also impose “simplicity priors” on the neural architecture %7,

In general, however, it is not guaranteed that closed-form expressions describing the response properties
of task-optimized models can be found. Evolution and development are under no general constraint to make
their products conform to simple mathematical simple shapes, especially for intermediate and higher cortical
areas at a remove from the sensory or motor periphery. However, even if such analytical simplifications do
not exist, the optimization framework nonetheless provides a method for generating meta-understanding via
characterizing the constraints on the system, rather than analyzing the specific outcome network itself. By
varying the architectural class, the computational goal, or the learning rule, and identifying which choices lead
to networks that best match the observed neural data, it is possible to learn much about the brain system of
interest even if its tuning curves are inscrutable.

Understanding Multiple Optima What happens when multiple optimal network solutions exist? For
many architecture classes there may be infinitely many qualitatively very similar networks with the same or
substantially similar outputs — e.g. those created by applying orthonormal rotations to linear transforms present
in the network. Sometimes, however, qualitatively very distinct networks might achieve similar performance levels
on a task. For example, very deep Residual Network architectures®!' and comparatively shallower (but much more
locally complex) architectures arising from Neural Architecture Search®? achieve roughly similar performance
on ImageNet categorization despite key structural differences.

The optimization framework does not require there be a unique best solution to the computational goal
to make useful predictions. If several subclasses of high-performing solutions to a given task are identified,
this is equivalent to formulating multiple very qualitatively distinct hypotheses for the neural circuits underlying
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function in a given brain area. Recent work in modeling rodent whisker-trigeminal cortex, in which similar task
performance on whisker-driven shape recognition can be achieved by several distinct neural architecture classes,
illustrates this idea®®. Comparison of the distinct model types to experimental results either from detailed
behavioral or neural experiments is then likely to point toward one of these hypotheses as explaining the data
better than others. Techniques similar to those used to create the models in the first place can be deployed to
generate optimal stimuli for separating the predictions of the multiple models as widely possible, which would
in turn directly inform experimental design. In these cases, the optimization framework serves as an efficient
generator of strong hypotheses.

In contrast, if most high-performing solutions to a computational goal fall into a comparatively narrower
band of variability, the set of model solutions may correspond to actual variability in the the real subject
population. For some brain regions, especially those in intermediate or higher cortical areas, the particular
collection of neural circuits present in any one subject's brain may vary considerably between conspecifics?3.
The optimization framework naturally supports at least two potential sources of such variation, including:

e Variation of initial conditions, described as a probability distribution over starting point models Ay to
which the learning rule is applied. For example, different random draws of initial values for linear filters L;
will lead to distinct final optimized HCNNs. While many high-level representational properties are shared
between these networks, meaningful differences can exist®*, and may explain aspects of the variation
between real visual systems.

e Variation of computational goal, described as a distribution over stimuli in the dataset defining the goal
task. This idea captures the concept that different individuals will experience somewhat different stimulus
diets during development and learning.

Understanding the computational sources of intra-specific variation is itself an important modeling question for
future work®.

A Contravariance Principle Though it may at first seem counterintuitive, the harder the computational
goal, the easier the model-to-brain matching problem is likely to be. This because the set of architectural
solutions to an easy goal is large, while the set of solutions to a challenging goal is comparatively smaller. In
mathematical terms, the size of the set of optima is contravariant in the difficulty of the optimization problem.

A simple thought experiment makes this clear: imagine if, instead of trying to solve 1000-way object
classification in the real-world ImageNet dataset, one simply asked a network to solve binary discrimination
between two simple geometric shapes shown on uniform gray backgrounds. The set of networks that can solve
the latter task is much less narrowly constrained than that which solve the former. And given that primates
actually do exhibit robust object classification, the more strongly constrained networks that pass the same harder
performance tests are more likely to be homologous to the real primate visual system. A detailed example of how
optimizing a network to achieve high performance on a low-variation training set can lead to poor performance
generalization and neurally inconsistent features is illustrated in *Hong et al.3?.

The contravariance principle makes a strong prescription for using the optimization framework to design
effective computationally-driven experiments. Unlike the typical practice in experimental neuroscience, but
echoing recent theoretical discussions of task dimensionality Gao et al.?%, it does not make sense from the
optimization perspective to choose the most reduced version of a given task domain and then seek to thoroughly
understand the mechanisms that solve the reduced task before attempting to address more realistic versions of
the task. In fact, this sort of highly reductive approach is likely to lead to confusing results, precisely because
the reduced task may admit many spurious solutions. Instead, it is more effective to impose the challenging
real-world task from the beginning, both in designing training sets for optimizing the neural network models, and
in designing experimental stimulus sets for making model-data comparisons. Even if the absolute performance
numbers of networks on the harder computational goal are lower, the resulting networks are likely to be better
models of the real neural system.

There is a natural balance between network size and capacity. In general, the optimization-based approach
is likely to be most efficient when the network sizes are just large enough to solve the computational task. Thus,
another way to constrain networks while still using a comparatively simple computational goal is to reduce the
network size. This idea is consistent with results from experiments measuring neural dynamics in the fruit fly,
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where a small but apparently near-optimal circuit has been shown to be responsible for the fly’s simple but robust
navigational control behaviors?”. It remains unknown whether the specific architectural principles discovered
in such simplified settings will prove useful for understanding the larger networks needed for achieving more
sophisticated computational goals in higher organisms.

Major Future Directions

The optimization framework suggests a wide variety of important future directions to be explored.

Better Sensory Models. Within the domain of the visual system, there are many substantial differences
remaining between state-of-the-art models and the real neural system. For neurons throughout the macaque
ventral visual stream, the best neural network models are able to explain only approximately 65 percent of the
reliable time-averaged neural responses to static natural stimuli. This neural result is echoed by the fact that
while the models are behaviorally consistent with primate and human visual error patterns at the category or
object level®2, they fail to entirely account for error patterns at a the finest image-by-image grain®®, especially
in the context of adversarially-created stimuli®®. Closing the explanatory gap will require a next generation of
improved models.

Another major open direction involves understanding recurrence and feedback in visual (and other sensory)
processing, and the corresponding modeling of neurons’ temporal dynamics. While some recent progress has been
made on functionally-driven neural models of temporal dynamics that integrate RNN motifs into HCNNs©L99 it
it is unlikely that a full understanding of the functional role of feedback has been achieved. While most modeling
efforts have so far focused on the ventral visual pathway, understanding the functional demands that lead to
the emergence of multiple visual pathways, or combining constraints at multiple levels (e.g. behavioral and
biophysical), is another key direction for future work. Likewise, little attention has been paid to understanding
the physical layout of brain areas. While some of the most robust results in human cognitive neuroscience involve
the identification of subregions of visual cortex that selectively respond to certain classes stimuli, e.g. the well-
known face, body and place areas®0192 the computational-level constraints leading to these topographical
features are poorly understood.

Learning. Though the optimization framework has shown exciting progress at the intersection of machine
learning and computational neuroscience, there is a fundamental problem confronting the approach. Typical
neural network training uses heavily supervised methods involving huge numbers of high-level semantic labels,
e.g. category labels for thousands examples in each of thousands of categories#”193 Viewed as technical
tools for tuning algorithm parameters, such procedures can be acceptable, although they limit the purview of
the method to situations with large existing labelled datasets. As real models of learning in the brain, they
are highly unrealistic, because, among other reasons, human infants and non-human primates simply do not
receive millions of category labels during development. There has been a substantial amount of research on
unsupervised, semi-supervised, and self-supervised visual learning methods 07781047106l Degpite these advances,
the gap between supervised and unsupervised approaches still remains significant. The discovery of procedures
that are computationally powerful but use substantially less labelled data is a key challenge for understanding
learning real biological learning.

Modeling Integrated Agents Rather Than Isolated Systems. Cogpnition is not just about the passive
parsing of sensory streams or disembodied generation of motor commands. Humans are agents, interacting
with and modifying their environment via a tight visuomotor loop. Effective courses of action based both on
sensory input and the agent's goals afford the agent the opportunity to restructure its surroundings to better
pursue those goals. By the same token, however, constructing and evaluating a complex action policy imposes
a substantial additional computational challenge for the agent that goes considerably beyond “mere” sensory
processing. Applying the optimization framework to modeling full agents is an exciting possibility, and some
recent speculative work in deep reinforcement learning has made progress in direction%%108  However, fully
fleshing out neural network models of memory, decision making, higher cognition that have the resolution and
completeness to be quantitatively compared to experimental data will require substantial improvements at the
algorithmic level.

The problem of learning becomes especially acute in the context of interactive systems. Human infants
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employ an active learning process that builds representations underlying sensory judgments and motor plan-
ningt0%°LL - Children exhibit a wide range of interesting, apparently spontaneous, visuo-motor behaviors —
including navigating their environment, seeking out and attending to novel objects, and engaging physically
with these objects in novel and surprising wayst197110  Modeling these key behaviors, and the brain systems
that underly them, is a formidable challenge for computational cognitive neuroscience1Z,
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