
Group Control and Kernels: The 1-D Equigrouping Problem

Daniel Yamins, Stephen Waydo, and Navin Khaneja

Abstract—One of the canonical problems of group con-
trol is to find local rules through which agents construct
specified configurations from arbitrary initial positions. In
this paper, we introduce and provide several solutions to the
1-d equigrouping problem, a simple but instructive version
of the general spatial configuration problem. We show how
deterministic solutions are possible on the linear lattice but not
the circle, while the reverse is the case for simple probabilistic
solutions. We determine a lower bound on the amount and
type of information required by any solution, and relate this
information to the geometry of the underlying lattice. Finally,
we introduce a concept of an interaction kernel, a tool for
investigating algorithms in depth. We use the kernel theory
to derive several general facts that characterize the group
behavior of all deterministic equigrouping solutions, providing
a theoretical framework for algorithm design and analysis that
may generalize to more complex group control problems.

I. INTRODUCTION
One of the canonical problems of group control of multi-

agent systems is to find local algorithms that construct con-
figurations of interest starting from arbitrary initial positions
[1], [2], [3], [4], [5], [6], [7], [8]. In this paper, we analyze
a very simple version of this problem.
Consider a one-dimensional lattice. Two point-agents

placed on this lattice are said to be in the same group if all
lattice points between the two agents’ positions are occupied
by other agents. Conversely, two agents are separated
if there is at least one unoccupied lattice point between
them. For each positive integer p, the one-dimensional p-
equigrouping problem consists of finding local algorithms
which for all m will take any initial configuration of m×p
agents at arbitrary positions into one in which there are m
separate groups of p agents each.
1-d equigrouping is a useful problem to study because it

illustrates several key difficulties in the local construction of
global patterns. A solution has to join every agent up to a p-
group even though any given agent cannot locally determine
at any given moment whether it should be grouped with
the agent on its right or left. On top of this difficulty,
if the algorithm groups a given agent with that to its
left, then what happens when the algorithm applies the
same “directive” to that agent on the left? How does this
apparently “recursive” loop end? Furthermore, suppose that
a given p-group does succeed in forming. This p-group
might be erroneous because it is not made up of agents
pn, pn+1, . . . , p(n+1)− 1 but is instead a p-group in the
wrong frame. Such a group has to be broken down and its
constituent agents regrouped. These are inherent and crucial

D. Yamins and N. Khaneja are with Division of Engineering and
Applied Science, Harvard University, Cambridge, MA 02138, USA
{dyamins,khaneja}@deas.harvard.edu
S. Waydo is with the Division of Control and Dynamical Sys-

tems, California Institute of Technology, Pasadena, CA 91125, USA
waydo@cds.caltech.edu

difficulties general to the spatial configuration problems.
Finding ad hoc an algorithm that solves such a problem
– not only the local update rules, but also how much and
what kind of information the agents must have available
– is often a frustrating exercise in trial-and-error. The
equigrouping problem is also interesting because it naturally
generalizes to clustering and simple pattern formation in
higher dimensions, and on spaces with different underlying
geometry (such as the circle or sphere).
In this paper we A) present a simple solution to

equigrouping on the line, and analyze the failure of these
solutions on the circle, B) provide a conceptual framework
for systematic analysis of deterministic solutions Fp, C)
calculate lower bounds on the amount and type of infor-
mation needed by the agents to carry out any solution,
and D) present a large class of probabilistic solutions on
the circle, and analyze the failure of these algorithms on
the line. It will turn out that the technique of partitioning
the agents into subgroups which non-trivially interact – so-
called “interaction kernels” – provides a natural way to
analyze the structure of solutions.

II. BASIC DEFINITIONS
Following the approach in [9], denote by X an initial

configuration of the agents on the line, and let a1, . . . an

be a listing of the agents A in X . Identifying L with the
integers Z, we denote by pos(a, X) the integral value of the
lattice point at which agent a is located in configuration
X . Hence, pos(a, X) > pos(b, X) indicates that a is to
the right of b in X . Given a configuration X , and a set
of agents B = {a1, . . . , ak} ⊂ A, let X |B denote the
configuration produced by deleting agents not in B. |X |
denotes the integer number of agents in X .
For a given agent a ∈ X , let br(a, X) ⊂ X be the ball of

radius r around a in X – the r lattice points to the left and
r lattice points to the right of a, together with whatever
agents are at those points. Let f(ai, X) be any operator
given by

f : br(ai, X) %→ s,

in which s is a lattice segment identical in which agent a
can have moved by at most one lattice position. We do
not allow two agents to occupy identical positions, and
so agents cannot cross positions. In the case that f(a, X)
“moves” the agent a to the left, we write [f(a, X)] = L;
and use analagous notation of R and S to denote right
and stationary movement respectively. We require f to be
identical for all agents ai, except the right and left most
agents re(X) and le(X), respectively. In fact, we allow
f({re(X), le(X)}, X) to be different from f(a, X) where
a is not an end-agent, corresponding to the idea of giving
agents line-of-sight information about whether or not they

have neighbors to their left and right (at whatever distance).
Denote the (possibly different) left and right maps by fl, fr.
We allow f to be probabilistically specified by attaching to
each possible configuration of the agent’s br(a) probabilities
pl, pr of moving to the left and right, and probability
1−pl−pr to remaining still.1 We require f to have a finite
well-defined information radius r (the size of the largest
ball br(a, X) from f can draw information). This is denoted
r(f).
We’ve defined f on a local ball around a given agent; we

can “globalize” this action to all of X in an obvious way
by taking X to a configuration in which br(a, X) has been
replaced with s; that is

f(a, X) = (X \ br(a, X)) ⊕ s.

Let A be the set of all infinite sequences of agent-labels
such that each agent ai appears infinitely many times.
These allowable semantic strings correspond exactly to the
UNITY semantics described in [10]. We say that f is a so-
lution to the p-equigrouping problem if for all such X with
m×p agents for anym and eachA = (a1, . . . , an, . . .) ∈ A,
the sequence of compositions

©if(a, ·) = f(an, (. . . (f(a1, X) . . .)

applied toX converges to a fixed equigrouped configuraiton
with probability 1. In other words, if we let Pn be the
probability that ©if(a, ·) is in Cp and remains fixed under
any possible further application of f , then limn→∞Pn = 1.
Let Fp denote the space of solutions to p-equigrouping.
(Henceforth we will use the notation fs

n(X) to denote the
action of the first n steps of f as scheduled by the semantic
string s, starting at initial configuration X .)
Given a configuration of agents X , we say that b ⊂

agents(X) is a j-group if it is a consecutive set of exactly
j agents. Denote the right-most agent re(b) and the left-
most agent le(b). Intuitively, just as individual agents can
(and must) have one of three behaviors (L, R, or S) under
any given algorithm f (namely, L, R or S), sets of agents
could as well. The formal definition of group behavior is:

Definition 1 Let g be a subset of the set of agents in a
given configurationX . Suppose also that g contains no end-
agents.
1) For a given algorithm f and semantic string s, we say

(f, s) moves g to the left if for any positive integer
n, there exists mn, another positive integer, such that
the left-end agent after action of (f, s) for mn steps
(that is, le(fs

mn
(g))) has been translated to the left of

its original configuration (that is, le(g)) by more than
n places, i.e.

pos(le(fs
mn

(g))) − pos(le(g)) < −n;

and similarly for the right-end agents. If this possi-
bility holds then we write [g, f, s] = L.

1If a given motion is unavailable since the adjacent position in that
direction is already occupied, the probability associated with that motion
is automatically 0. Deterministic algorithms are simply the special case in
which one of pl, pr , 1 − pr − pp is 1 and the others zero.

2) The definition of (f, s) moving g to the right is the
same except the end points get translated to the right,
i.e.

pos(le(fs
mn

(g))) − pos(le(g)) > n;

and similarly for the right-end agents. If this possi-
bility holds then we write [g, f, s] = R.

3) The other possibility is that under (f, s) the group
doesn’t move. Formally, we say that (f, s) stays g in
place if for all m the end-points of f

(m)
s have moved

no further than some fixed distance d from initial
points. If this possibility holds, we write [g, f, s] = S.

Though L, R, S are mutually exclusive and exhaustive
behaviors at the level of the individual agent, it is not a
priori clear whether this remains true for groups of agents.
We will see below an important class of situations in which
it does.

III. A SOLUTION ON L

We now present a deterministic algorithm that solves
equigrouping problem on the line.

Algorithm 1 For each p, define the algorithm F (p) locally
to any given agent a by the rules
1) Suppose a is NOT the first agent to the left along
the whole lattice L, but IS the left-most agent of a
local group of agents. Then if that local group has
size unequal to p, move left, i.e. [F (p)(a, X)] = L.
If the size of the local group is equal to p, then the
action is to stay, i.e. [F (p)(a, X)] = S.

2) Suppose a is the first agent to the left along the whole
lattice L. If a is in a group of size greater than p, the
action is L. If the group’s size is ≤ p, the action is
S.

3) In all other cases, agent a’s action is S, to stay.
To give the reader a better sense of how this algorithm

works, let p = 3, m = 2 and consider the initial configu-
ration X in which four consecutive agents are to the left
of two consecutive agents. Under the semantic generated
by reading off agents repeatedly from left to right, F (3)
converges to a solution in 7 steps:

Proposition 1 For each p, F (p) is a solution to p-
equigrouping.

A proof of proposition 1 appears in section V.

Given any algorithm f , we can define a mirror algorithm,
fM , by

fM (ai, X) = ρ(f(ai, ρ(X)))

where ρ is the reflection of X around ai. If f ∈ Fp, for
some p then fM ∈ Fp. This is because any configuration in
Cp is still in Cp if it is viewed from “behind” as opposed
to from “the front.” Hence, the “left” version of Algorithm
1 has a “right version” mirror.
Notice that in Algorithm 1 the information radius

r(F (p)) ≥ p. Also, notice that the behavior of (at least
one of) the end-most agents is different from the rest – that
is, the left-most agent must know that it is an end-agent. It
turns out that these facts are always true, as we will see in
the next section. Notice also that all the various j-groups
travel in the same direction – either they all travel to the
left, or to the right (as in the mirror algorithm). It can be
shown – by exhibiting several other algorithms – that this is
not always true. In other words, that there are algorithms in
Fp which send different-sized groups in different directions.
However, there is in fact a unifying relationship between the
directions of the various groups, as we shall see in section
V.

IV. BASIC THEORY
First, we present several simple results which provide

motivation for the rest of the work.

Proposition 2 Let f be a solution to p-grouping. Then the
information radius of f must be at least p.

Proof: Suppose that f ∈ Fp and r(f) < p. Then
consider X1 in which there are p agents in a row, and X2

in which there are 2p agents in a row. On the one hand, f
must fix X1 for any semantic. That is becauseX1 is already
in the unique (up to quotienting by position) solution. Let
al and ar be the left and right-end agents, respectively. We
have that

[fl(al, X1)] = [fr(ar, X1)] = S.

On the other hand, X2 is not solved. However,

bp−1(al, X1) = bp−1(al, X2)

and
bp−1(ar, X1) = bp−1(ar, X2).

Hence

[fl(al, X2)] = [fl(al, X1)] = S = [fr(ar, X1)] = [fr(ar, X2)].

But then f (in any semantic) fixes X2 as well. But therefore
f is not a solution, yielding a contradiction.

Proposition 3 There are no deterministic algorithms f
such that

fl = f = fr

as maps of configurations.

Proof: Let p ∈ N be arbitrary and suppose the
opposition of the assertion: namely that fl(a, X) = f(a, X)
for all pairs (a, X) in which a is the last agent on the
left within its r(f)-radius, and fr(a, X) = f(a, X) for
all a, X in which a is the last agent on the right within
its r(f)-radius. Then consider the configuration X∗ made
up of p agents isolated from each other by more than
r + 1 spaces on either side, where r is the information
diameter of f . Let s be a semantic consisting of repeated
iteration of any ordering a1, . . . , ap of the agents, i.e. s =
(a1, . . . , ap, a1, . . . , ap, . . . ,). Since f can only move any
agent by at most one step, we have that after the first step
of f applied to a1, that agent d(f(a1), ai) > r is still true
for all i, i.e. a1 is still isolated, as are all the other agents.
But then

[f(a1, X)] = [f(a2, f(a1, X))].

Therefore after all p agents “go”, the result is a translate of
the original configuration by [f(ai, X)]. Thus fs does not
converge to an equigrouped solution on X∗, which in this
case would have been one p-group, a contradiction to the
assumption that f is a solution.
We’ve proved here that the right or left end agent (or

both) must in the limited case of being totally isolated, know
that it is an end-agent. In other words, some kind of extra
information – requiring the ability to communicate across
the infinitely long line – is required.
Propositions 2 and 3 are simple examples of more general

statements that can be made about deterministic solutions
to equigrouping.

V. INTERACTION KERNELS
There is a limit to the power of the results one can derive

using the naive techniques of the previous section. To delve
deeper into the structure of solutions, it would be useful to
decompose algorithms into some type of irreducible units
whose behaviors could be analyzed separately and then put
together through interactions to form a more comprehensive
theory. To this end, we introduce the interaction kernel.

Definition 2 Let g be a set of agents on the line L and f
be a deterministic algorithm that solves equigrouping. Then
g is a prekernel for a given semantic string s if there is an
integer l ∈ N such that when isolated, given any m ∈ N,
there is an integer n ≥ m such that at stage n, consecutive
elements of fs

n(g) are within distance l of each other. In
addition, a set of agents g is irreducible with respect to
(f, s) if for no consecutive decomposition g = g1 ⊕ g2 is
fs

n(X) = f
s|g1
n (g1) ⊕ f

s|g2
n (g2). A kernel is an irreducible

prekernel.

In other words, an interaction kernel is a group which,
when isolated, “stays together” and which cannot be written
as the direct sum of two subgroups which also stay together.
For our purposes, the important fact about kernels is that,
with a suitably restricted class of semantic strings, they have
well-defined, mutually exhaustive and exclusive group-level
behaviors. That is:

Proposition 4 [Kernel Behavior] Suppose that the seman-
tic string s is composed of iteration of the finite semantic
string ŝ, i.e. s = (ŝ, ŝ, ŝ . . .) and that g is a kernel for (f, s).
Then there is a unique behavior B ∈ {L, R, S} such that
[g, f, s] = B.

Proof: For a given (deterministic) algorithm f , con-
sider the set of possible configurations of isolated j-groups
within distance l, up to translation. Call this set Rj,l. It
is a finite set, as can easily be seen by counting. Given
a configuration X in absolute positions, let X̃ denote the
equivalence class of X in Rj,l.
Because g is a kernel for (f, s), the repeated iterative

application of fs to g never “breaks up the group” forever,
so to speak. Denote Xt = fs

t (g), and let t1, . . . , tn, . . . be
the times when agents of g are in a j-group configuration.
Then, with respect to relative position, the map p defined
by p(Xti

) = Xti+1
induces a map

p∗ : Rj,l × Zk → Rj,l × Zk

where k is the length of ŝ, in which the Rj,l component is
the relative configuration of Xt up to translation, and the
Zk component is the step along ŝ that the algorithm is at,
that is, the residue of ti mod k.
Since Rj,l and Zk are finite, iteration of p∗ must hit at

least one configuration more than once. In particular, let
(r, i) be the first configuration such that p∗ hits it twice.
Suppose that (r, i) is first hit at time τ1 and then again
at time τ2. The crucial point is that hereafter the update
becomes periodic, that is,

X̃τ1+k(g) = X̃τ2+k(g)

and in particular

X̃τ1+m(τ2−τ1)(g) = r

for all m ≥ 0.
Now, compare Xτ1

with Xτ2
. Since they both have the

same relative positions, there are three possibilities: Xτ2
is

either a left-translate of Xτ1
, a right-translate of it, or is

identical to it. Hence we can capture the relative position
of Xτ2

with respect to Xτ1
in a single integer – namely

n = pos(a, Xτ2
) − pos(a, Xτ1

)

which is the same for every agent a ∈ g. Since the update
is time-independent, we have that

n = pos(a, Xτ1+(i+1)(τ2−τ1)) − pos(a, Xτ+i(τ2−τ1))

for all i (and of course all a ∈ g). Hence we can identify a
well-defined integer n with (g, f, s), and define the speed

n(g, f, s) =
n

τ2 − τ1
.

Finally, note that if n(g, f, s) > 0, then [g, f, s] = R
and uniquely so; if n(g, f, s) < 0, then [g, f, s] = L, also
uniquely; and if n(g, f, s) = 0, then [g, f, s] = S, similarly
unique.
One thing to note is that, using the same proof technique, we
can show that though a prekernel is required only repeatedly

to return to within a bounded region, this in fact implies that
the agents are always within some bounded distance of each
other.
Proposition 4 means the kernel behaviors are well de-

fined, and in fact possess well-defined speeds of motion.
For notational clarity later on, we define the periodic set
per(g, f, s) for an (f, s)-kernel g to be the set of configu-
rations that g hits after τ1, that is, once the kernel becomes
periodic. In addition, let Sj be the set of all pairs (g, s) for
which g is a middle group of size j that is an (f, s)-kernel,
and s is iteratively generated. Let Sj

l and Sj
r be analagously

defined for left- and right-groups respectively.
Suppose g and g′ are two (f, s)-kernels and are periodic

configurations, i.e. g ∈ per(g, f, s) and g′ ∈ per(g′, f, s).
We can form various sums g ⊕ g′ in which the agents of
g are placed to the right, or to the left, of the agents in
g′, at various distances. If g is placed to the left of g′ and
n(g, f, s) ≤ n(g′, f, s) – and treated as isolated agents (but
not end-groups) – then g will never interact with g′. On the
other hand, if n(g, f, s) > n(g′, f, s) then the two groups
will come into contact – that is, there will be a time such that
le(g′) and re(g) will be within distance r(f) of each other,
and after which fs

t (g⊕ g′) += fs
t (g)⊕ fs

t (g′). The resulting
conglomerate might become one larger kernel, break down
into several others, or perhaps somehow not generate any
kernels at all. Similar, but more complicated scenarios are
imaginable with more than two starting kernels.
Whenever kernels exist, we can consider the idea of

tracking the “interaction pattern” of kernel formations and
break-ups. It can be shown in fact, that in a certain sense,
kernels always exist – and that algorithm evolution is always
the interaction of kernels.

Proposition 5 [Kernel Existence] For size-j configuration
g, and iteratively generated semantic s, there is a time t
and a consecutive decomposition

g = gt
1 ⊕ . . . ⊕ gt

m

such that each fs
t (g)|gt

i
is a periodic configuration of an

(f, s|gt
i
)-kernel, and such that under the evolution of f each

kernel survives for at least one kernel-period.

In other words, a well-defined kernel-pattern repeatedly
arises from any configurtion; these kernels interact, agglom-
erate, and break down. There are much stronger results than
this, which we will develop in future work.

Proof: Let the semantic s be generated by ŝ. Consider
the agents of g: they are {a1, . . . , aj} from left to right.
Now, let 1 ≤ i1, . . . , ik ≤ j − 1 be a maximal set of
increasing integers such that in the evolution of g under
(f, s), given any m ∈ N, there is a time tm such that for
each j, the agent aij

at time tm is at least distance m from
its right neighbor, that is,

d(fs
tm

|aij
, fs

tm
|aij+1

) > m.

In other words, the groups g′1 = (a1, . . . , ai1), g′2 =
(ai1+1, . . . ai2), . . . , g

′
n = (aik+1, . . . , aj) get arbitrarily

far away from each other, but then all the agents within

the groups themselves remain within a fixed distance, say
δi, whenever the inter-group distance is larger than some
number, say η. Let δi be this fixed distance for each
group g′i. Then define m1 = max{2|R|g′

i|,δi
| × |ŝ|} and

let m = m1 + η. After tm steps, under the evolution of
(f, s), the g′i will be separated by more than m steps. Over
the next m steps, the intragroup distance of the g′i remains
less than δi since the inter-group distance will necessarily
be larger than η. But then, via arguments identical to those
used in proving proposition 4, periodic configurations get
hit, and we see that each of the g′i must be a sum of non-
interacting kernels, each of which “has time” to execute at
least one kernel period. This is what we wished to prove.

This theory is useful in understanding Algorithm 1. First
notice that F (p), under any semantic string s, reduces to
F (p) under strings which only activate left-most agents
of groups. That is because agents which are not left-most
agents of any given group cannot move at all. In this
particular subset of semantics, the kernel structure and
interaction pattern of Algorithm 1 is easy to calculate.2
Suppose a group g does not contain the left-most agent

le(X). If g contains fewer than p agents, it is obviously a
sum of one-kernels. If it contains p agents, it is a single p-
kernel. For g containing p+1 or more agents, g decomposes
as g′⊕P where P is a p-kernel composed of the right-most
p agents in g. Any 1-kernel will eventually move to the left,
as it will be eventually a left-most agent, whereas any agent
in a p-kernel will remain fixed. Thus, a 1-kernel interacting
with a p-kernel from the right will always produce the
pattern (p, 1) → (1, p) of kernel sizes.
Now suppose g does contain the left-most agent le(X).

If g contains p or fewer agents, it is a sum of 1-kernels. If
g contains more than p agents, it clearly decomposes into
kernels P+1⊕g′ where P+1 is a p+1-kernel composed of
the left-most agents of g. A kernel interacting with g from
the right will always produce another such g. In any case,
g will always break down into the kernel decomposition
le(X)⊕ (g\ le(X)) (with at least one space between them)
and since g \ le(X) does not contain the left-most agent,
the previous analysis applies to it. Now g \ le(X) contains
at least p agents, so therefore a p-kernel exists at its right
end.
This calculation allows us to provide a short and concep-

tually satisfying proof to proposition 1.
Proof: (Proposition 1) We proceed by induction on

m, where mp is the number of agents. When m = 1, the
algorithm clearly works, since le(X) will always be fixed,
and agents to the right will always move until they are
fixed by being consecutive to le(X). For m > 1, if a p-
kernel arises at some time, then because 1-kernels always
eventually move left and because of the (p, 1) → (1, p)
interaction, we see that a p-kernel P must eventually get
fixed at the right-most end. We can then apply this same
reasoning again to X \ P , and finish by induction. It only

2This semantic situation itself would be difficult to establish in practice
since different initial conditions would require different semantic patterns.
We will see that this won’t affect our results.

remains to show that a p-kernel always arises when m >
1. Suppose otherwise. If the left-end P+1 kernel situation
arose, then a p-kernel arises shortly thereafter (as we saw
above), so this is ruled out. But then all agents are in 1-
kernels at all times. Then le(X) would have to remain fixed,
where as all other agents would have to move indefinately,
a contradiction.
We proved the result for restricted semantics activating

only left-end agents; but because F (p) reduces to this case,
the result applies in the case of the most general UNITY
semantics.
Propositions 4 and 5 apply for any algorithm (with

iteratively generated semantics), and are not specific to
solutions of equigrouping. The important question then
is: given that kernels exist, and have well-defined group
behaviors, what can we learn about the kernel behavior of
solutions to equigrouping? Does the fact of being a solution
impose any specific structure on the behavior of kernels?
The answer is yes – ultimately, this is the whole point of
introducing kernels in the first place. The following theorem
collects some of the simplest results along these lines.

Theorem 1 Let f ∈ Fp be deterministic. Then:
1) For no iteratively generated semantic strings

sl, sr, sm can j-groups gl, gr, gm be kernels of
(fl, sl), (fr, sr), (f, sm) respectively such that

n(gl) ≤ n(gm) ≤ n(gr).

2) Suppose that 1 ≤ j ≤ p−1, gj is a j-group kernel for
(fr, sr), and gp−j is a p− j-group kernel for (fl, sl).
Then

n(gj , fr, sr) < n(gp−j , fl, sl).

3) If there is (g, s) ∈ Sj with n(g, f, s) = 0, then either
• For all (g′, s) ∈ Sj

l , n(g′, f, s) > 0 or
• For all (g′, s) ∈ Sj

r , n(g′, s) < 0.
This situation is called “end-state squeezing.”

4) Suppose (g, s1,2) ∈ Sj and per(g, f, s1) ∩
per(g, f, s2) += 0. Then either

sign[n(g, f, s1)] = sign[n(g, f, s2)]

or end-state squeezing occurs.

The proof of the theorem is given in the appendix.
Proposition 3 is a special case of theorem 1.1, that is, that
end-state information is required for a more general setting,
and therefore more robustly, than previously shown. Part
two provides a relationship between the (end-state) behavior
of a j-kernel and its complementary piece, a p − j kernel.
Part three establishes that one of the behaviors, namely
S, when it appears at all, forces a relatively pathological
structure on to the algorithm. Finally, the fourth part shows
that, as a result of part 3, the apparent dependence of
kernel behavior on the choice of semantic string is highly
constrained. One of the future steps in this work is to
establish sharper and more restrictive necessary conditions
on the kernel-interaction pattern as whole for any solution
to equigrouping.

VI. PROBABILITY AND THE CIRCLE
We have found a solution and analyzed aspects of the

solution space for deterministic algorithms on the line.
But what about finding probabilistic solutions? And what
about solutions on the circle? It turns out that there is an
interesting link between these two questions.
There are natural maps of algorithms from the line L

to the circles Cn. Let φn : L → Cn be a wrapping map
taking 0 ∈ L to 0 ∈ Cn. That is, if we identify the positions
on L with the integers, then we can identify Cn with Zn

and φn identifies with the standard surjection Z → Zn (the
“modulo-n” map). For any agent a in Cn consider (a, Y)
where Y is a configuration on the underlying space Cn.
If r < n, we can lift (a, Y) naturally to a configuration
(a, X) over L by simply lifting the agent a to the smallest
reprensentative a′ in φ−1(pos(a)) and defining X to look
like Y |Br(a) around a′ and be blank elsewhere. Because r
is less than n, the agent cannot determine that it is on a
circle as opposed to a line. Our goal is to begin to explore
solutions f that work for all circles Cn where n is larger
than the information radius of f .
Let AL be space of locally determined algorithms on

the line and ACn the space of algorithms defined on the
n-circle. We then have a map Φn : AL → ACn given by

Φn[f](a, Y) = φn(f(a, X))|Br(a) ⊕ id.

Clearly Φn is surjective for each n. Considering the
set Φ−1(f) for some f , we get a number of different
algorithms on the line, only different in end-state behavior.
The “canonical” representative f̂ ∈ Φ−1(f) is the one that
has end-state maps being the same as the non-end-state
maps.
Just as we could define Fp to be the set of solutions to

p-equigrouping on the line, let Fc
p be the set of solutions

to p-equigrouping on the circle. We say f ∈ Fc
p if for each

n and for all p-equigroupable configurations X on Cn, f
solves X . Then

Proposition 6 There are no deterministic f ∈ Fc
p .

Proof: Suppose that f is a deterministic solution. Then
it should work for all configurations on Cn∗ where n∗ =
p(r + 1). Consider the configuration which equally spaces
out p agents on Cn∗ isolated from each other by r+1 places.
(This underlying space is just big enough to do this.) Then
let S be a 1-to-1 ordering of the agents (a1, . . . , ap) and
let s be the semantic generated by repeated iteration of this
ordering. Just as in the proof of proposition 3, application
of f to any agent does not change the fact that all agents
are isolated from each other. Hence just as above,

[f(a1, X)] = [f(a2, f(a1, X))].

This happens for all i, and as above there is a contradiction.
Hence any solution must be non-trivially probabilistic.
Because no deterministic solutions on the line work, all
deterministic solutions are killed by the natural map.
Another way to see proposition 6 is to notice that any

deterministic solution f on Cn∗ lifts under Φn∗ to a deter-
ministic algorithm f̂ on L which would have f̂r = f̂l = f̂ .

But any such f̂ must just be a translation, and so f just
translates X on the circle, and hence is not a solution. In
words: the extra information of “being at the end” which
is necessary to allow a deterministic algorithm to solve
equigrouping on the line is simply unavailable on the circle
due to the symmetry, so no deterministic algorithm works.
Notice that the idea of non-trivial probability should break
the symmetry, intuitively.

Algorithm 2 Let f be such that for any given situation
(a, X) the probability of motion available to a in X is
non-zero except when a is not the end-agent of a p-cluster,
and [f(a, X)] = S otherwise (that is, whenever no motion
is available or a is the end-agent of a p-cluster). Call this set
of algorithms (when considered as algorithms on the circle)
Bc

p

Proposition 7 The algorithms in Bc
p are solutions to p-

equigrouping on the circle for iteratively generated seman-
tics, that is,

Bc
p ⊂ Fc

p

when considered for iteratively generated semantics only.

Proof: Let X be any initial condition on the circle Cn

which can be p-equigrouped (that is, it contains a multiple
of p number of agents and the circle is big enough).
Suppose that there is non-zero probability that f ∈ Bc

p

does not solve X ; then with non-zero probability there is
configuration Y which appears infinitely many times (given
that the configuration-space of the circle is finite). In fact,
because the semantic string is iteratively generated (say
by ŝ = (ŝ1, . . . , ŝm), there is non-zero probability that Y
appears at the same time-step (with respect to the semantic
generator), say at step ŝi ∈ ŝ. Now, consider the semantic
string after some instance of Y at ŝi. It is generated by
(ŝi+1, . . . , ŝm, ŝ1, . . . , ŝi). We can choose l large enough
that some string of actions b1, . . . , bl (where each bj is either
right, straight, or left) in which bj is the action taken by
the agent ŝ(i+1+j) mod m, solves Y . Now the probability
that the actual actions taken by f for the next l steps
after any given instance of Y at step ŝi are equal to the
string b1, . . . , bl is some non-zero constant. But the string
(ŝ(i+1+j) mod m|1 ≤ j ≤ l) appears infinitely many times
after instances of Y at ŝi. Hence the probability that the
actions taken by f after such an instance eventually hit
b1, . . . , bl tends to 1. But once b1, . . . , bl happen, the system
halts at a equigrouped solution, and hence Y cannot appear
again thereafter. Hence it is a contradiction to assume the
existence of Y with non-zero probability; i.e. f is a solution.

This result confirms the intuition that probabilistic spec-
ification somehow breaks the symmetry which dooms the
deterministic algorithms to failure on the circle. It turns out
that the algorithms of B can be shown to work for much
larger class of semantic strings. We will not prove this result
here due to lack of space.

These ideas on the circle beg the question: What are the
probabilistic solutions to the problem on the line? Do the

solutions above “lift” to the line? The answer in general is
no. In particular:

Proposition 8 When p > 3, Φ−1(Bp) ∩ Fp = ∅. That is,
the Bp>2 do not lift to the line as solutions.

Proof: Let X be the set of configurations on the line
L with m = 1, i.e. with p agents. Fix a semantic string
iteratively generated by (a1, . . . , an) where the ai list from
left to right the agents in X . Now consider the map

G : X −→ Z
p−1

by

G(X) = (pos(a2) − pos(a1), . . . , pos(an) − pos(an−1)).

Under the evolution of any f ∈ Φ−1(Bp), G(fs
t (X)) traces

out a random walk in the set G = {z ∈ Zp−1|zi > 0},
reflecting at any of the boundaries (i.e. when zi = 0
for some i). For f to be a solution on the L to all
elements in X would mean that for any initial point in G,
the random walk starting at that point would have to hit
1 = (1, . . . , 1) ∈ Zp−1 with probability 1. (Once such a
path hits 1 it becomes stationary, due to the rules of the
algorithm.) But in dimensions 3 or higher, random walks
on lattices are not ergodic [11]. Hence, the probability that
such a path will hits 1 is less than 1 when p ≥ 4. Hence f
will not succeed with probability 1 for the semantic string
s, and is therefore not a solution.
Are there any probabilistic algorithms on the line? Yes:

in fact, it turns out that Φ−1(B2) ⊂ F2, (a partial converse
of proposition 8) but due to limited space we will not prove
this here.
What is the relationship between propositions 3 and 8?

The first identifies an obstacle to creating deterministic algo-
rithms without specific end information. This “determinism
trap” can be overcome on the circle by using probability.
However, proposition 8 shows that the determinism trap is
not the only obstacle to removing the requirement of extra
infinitary information. Because L, unlike the circles, is non-
compact, issues of ergodicity become important. On a finite
line, as on the circle, this problem would go away.

VII. APPENDIX
Proof: (Theorem 1)

1) Suppose on the contrary that there are iteratively generated sl, sr, sm

and initial configurations gl, gr, gm of j agents each, which are left-,
right-, and middle kernels respectively for (f, sl), (f, sr) and (f, s), and
whose respective speeds satisfy the given inequality. We will construct an
unsolved initial configuration and a semantic under which f cannot solve
the given configuration. In particular, consider

X = gl ⊕ gm ⊕ gm ⊕ . . . ⊕ gm ⊕ gr

in which which gm is repeated lcm(j,p)
j

−2 times. Clearly the configura-
tion as constructed has a multiple of p agents. Now consider the semantic
s iteratively generated by sl ◦ sm ◦ sr . Under the pair (f, s) the gl group
of agents is separated far enough from the rest of the agents to its right so
that it behaves as the separate (f, sl) kernel. Similarly for each copy of
the gm group and the gr group. But then given that nl ≤ nm ≤ nr , we
see that the system evolves so that the gl group never comes into contact
with the left-most copy of the gm group, whereas the right-most copy of
the gm group never comes into contact with the gr group. In fact, if any
of the inequalities are strict, then the groups get increasingly farther apart.
Hence X is never solved by f under the given semantic, a contradiction.

2) Suppose again on the contrary that gj is a size-j left-kernel for
(f, sl) and gp−j a size-p − j right-kernel for (f, sr). Then consider the
configuration X = gj ⊕ gp−j . This configuration has p agents. Consider
the evolution of it under (f, < sl ◦ sr >). If the speed of the right group
is greater than that of the left group, the two will come into contact and
hence f cannot solve X for this semantic, a contradiction.
3) If there exists s (iteratively generated or otherwise) such that

[f, g, s] = S, then for any configuration g of j agents, either all sl
(not necessarily iteratively generated) for which [g, fl, sl] exists have
[g, fl, sl] = R or all semantic strings sr for which [g, fr, sr] exists
have [g, fr , sr] = L. Suppose otherwise. Let gm, sm be a j-agent
configuration such that [gm, f, sm] = S. Let gl, gr be j-group agents
which have well-defined behavior under sl, sr , but such that [gl, fl, sl] %=
R, [gr, fr , sr] %= L. Then using the same construction of X as in the first
part yields a structure which will never be solved. Now, we can of course
apply this to the case of the j-groups being kernels under the various
semantics, which gives the result as stated.
In fact, consider the set v(j, p) of Zp residues of multiples of j and

suppose that for any configuration x of j agents (not as an end group)
there is some semantic string (iteractively generated or otherwise) staying
x. Then for any m ∈ v(j, p) and m1, m2 > 0 such that m1 +m2 = m,
either all semantics sl send any configuration of m1 agents considered
as a left-end group to the right or all semantics send any configuration of
m2 agents considered as a right-end group to the left. This follows for the
same reason as above, but using X constructed as

X = gm1
l

⊕ gj
m ⊕ gj

m ⊕ . . . ⊕ gj
m ⊕ gm2

r

in which the j-group g
j
m (considered as a middle group) is repeated k

times, where kj + m1 + m2 is some multiple of p. (This is why we
require that m1 + m2 is a p-residue for some multiple of j.)
4) For iteratively generated semantics s1, s2 consider the sets P1, P2

of periodic kernel configurations for s1, s2. Suppose that x ∈ P1∩P2 and
that si is generated by ŝi. Then if n1 = n(x, f, s1) has a different sign
from n2 = n(x, f, s2), and suppose wlog that n1 > 0. Then consider
the semantic

s = (ŝ1, ŝ1, . . . , ŝ1, ŝ2, ŝ2, . . . , ŝ2)

where ŝ1 is repeated b1 = | lcm(n1,n2)
n1

| times and ŝ2 is repeated b2 =

| lcm(n1,n2)
n2

| times. The result is that the speed

n(g, f, s) = n1b1 + n2b2 = lcm(n1, n2) − lcm(n1, n2) = 0.

That is, g is an (f, s) kernel with speed zero. Hence the previous part
applies to give the result.

REFERENCES
[1] C. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral

Model,” Proc. SIGGRAPH, 1987.
[2] J. Toner and Y. Tu, “Flocks, Herds, and Schools: A Quantitative

Theory of Flocking,” Phys. Rev. E, Vol. 58 No. 4, 1998.
[3] R. Olfati-Saber and R. M. Murray, “Flocking with Obstacle Avoid-

ance,” Proc. IEEE CDC03, 2003.
[4] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of Groups of

Mobile Autonomous Agents Using Nearst Neighbor Rules,” IEEE
Transactions on Automatic Control, Vol. 48, No. 6, 2003.

[5] H. Tanner, A. Jadbabaie, and G. Pappas, “Stable Flocking of Mobile
Agents, Parts I and II,” Proc. IEEE CDC03, 2003.

[6] P. Ogren, E. Fiorelli, and N. E. Leonard, “Formations with Mis-
sion: Stable Coordination of Vehicle Group Maneuvers,” Proc. 15th
International Symposium on Mathematical Theory of Networks and
Systems, 2002.

[7] F. Zhang and P.S. Krishnaprasad, “Coordinated Orbit Transfer for
Satellite Clusters,” Proc. IEEE CDC02, 2002.

[8] E. Klavins, “Autnomatic Synthesis of Controllers for Distributed
Assembly and Formation Forming,” Proc. IEEE Conference on
Robotics and Automation, 2002.

[9] D. Yamins, “A Framework for Hierarchical Agent Systems,” Proc.
ALIFE VIII, 2003.

[10] E. Klavins, “A Formal Model of Multi-Robot Control and Commu-
nication Tasks”, Proc. IEEE CDC03, 2003.

[11] E. W. Montroll, “Random Walks in Multidimensional Spaces, Espe-
cially on Periodic Lattices,” J. SIAM, Vol. 4, 1956.

